Dust with Strong Magnetic Inclusions: Superparamagnetic Barnett Relaxation and Alignment by Radiative Torques

نویسندگان

  • A. Lazarian
  • Thiem Hoang
چکیده

We report a substantial increase of the rate of internal relaxation in dust grains containing superparamagnetic inclusions. The effect arises from the increase of dissipation induced by the Barnett effect. The increase of the internal relaxation induces higher coupling of the rotational and vibrational degrees of freedom of grain with important consequences to thermal trapping of grains. In terms of the alignment of grains by radiative torques, which is currently is the prefered mechanism for alignment, first of all, the enhanced Barnett magnetization induces faster Larmor precession of grains, which affects, for instance, the moment when the radiative torque alignment occurs in respect to light direction rather than the direction of magnetic fields. More importantly, we show that the alignment of grains with superparamagnetic inclusions is different from that of ordinary paramagnetic grains. If for the latter the dissipation induced by magnetic field is negligible, for superparamagnetic grains, it changes the character of radiative torque alignment, inducing perfect alignment instead of a partial one. Subject headings: polarization -dust extinction -ISM: magnetic fields

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alignment of Dust with Magnetic Inclusions: Radiative Torques and Superparamagnetic Barnett and Nuclear Relaxation

We consider grains with superparamagnetic inclusions and report two new condensed matter effects that can enhance the internal relaxation of the energy of a wobbling grain, namely, superparamagnetic Barnett relaxation, as well as, an increase of frequencies for which nuclear relaxation becomes important. This findings extends the range of grain sizes for which grains are thermally trapped, i.e....

متن کامل

Quantitative Theory of Grain Alignment: Probing Grain Environment and Grain Composition

While the problem of grain alignment was posed more than 60 years ago the quantitative model of grain alignment that can account for the observed polarization arising from aligned grains has been formulated only recently. The quantitative predictions of the radiative torque mechanism, which is currently accepted as the dominant mechanism of grain alignment, open avenues to tracing magnetic fiel...

متن کامل

What Grain Alignment Can Tell About Circumstellar Discs and Comets

Grain alignment theory suggests that grains should be aligned in circumstellar regions and the observational data available supports this conclusion. We discuss the alignment of grains via (1) magnetic relaxation, (2) mechanical processes, and (3) radiative torques. We show that ferromagnetic relaxation is likely to be more important than superparamagnetic relaxation if the dust in circumstella...

متن کامل

Quantitative Polarimetry: A Unified Model of Dust Grain Alignment by Magnetic Radiative Torques

Polarization of optical starlight and far-infrared thermal dust emission due to alignment of interstellar grains offers a powerful window to study magnetic fields in the various astrophysical environments, from the diffuse interstellar medium to accretion disks surrounding young stars. Precision cosmology requires accurate model of Galactic dust polarization for the first detection of Cosmic Mi...

متن کامل

Radiative Torques Alignment in the Presence of Pinwheel Torques

We study the alignment of grains by radiative torques and pinwheel torques taking into account internal relaxations and thermal flipping. We identify with radiative torques the torques arising from anisotropic radiation, while all torques that are fixed in grain body axes, including the radiative torques arising from extinction of isotropic radiative field, we identify with pinwheel torques. We...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008